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Figure 1. Generated gait sequences: GaitCrafter can generate both known and novel identities. Here we show generated 30-frame (∼ 1
second) gait sequences for four different individuals, each covering a complete gait cycle. These sequences are temporally consistent and
preserve both the structure and motion patterns characteristic of each subject’s gait. As shown in the figure, the generated videos maintain
the periodicity of walking and retain identity-specific biometric cues throughout the full sequence.

Abstract

Gait recognition is a valuable biometric task that enables
the identification of individuals from a distance based on
their walking patterns. However, it remains limited by the
lack of large-scale labeled datasets and the difficulty of col-
lecting diverse gait samples for each individual while pre-
serving privacy. To address these challenges, we propose
GaitCrafter, a diffusion-based framework for synthesizing
realistic gait sequences in the silhouette domain. Unlike
prior works that rely on simulated environments or alter-
native generative models, GaitCrafter trains a video dif-
fusion model from scratch, exclusively on gait silhouette
data. Our approach enables the generation of temporally
consistent and identity-preserving gait sequences. More-
over, the generation process is controllable-allowing condi-
tioning on various covariates such as clothing, carried ob-
jects, and view angle. We show that incorporating synthetic
samples generated by GaitCrafter into the gait recognition
pipeline leads to improved performance, especially under
challenging conditions. Additionally, we introduce a mech-

anism to generate novel identities-synthetic individuals not
present in the original dataset-by interpolating identity em-
beddings. These novel identities exhibit unique, consistent
gait patterns and are useful for training models while main-
taining privacy of real subjects. Overall, our work takes an
important step toward leveraging diffusion models for high-
quality, controllable, and privacy-aware gait data gener-
ation. Github: https://github.com/sirsh07/
GaitCrafter.

1. Introduction

Gait recognition is the task of identifying individuals based
on their body shape and walking patterns. As a biometric
modality [32], it offers several advantages over traditional
methods such as fingerprint or facial recognition[19, 43]
and is different from general video recognition tasks [7, 14,
20–24, 31, 36]. Notably, gait can be captured unobtrusively
from a distance, without requiring the subject’s cooperation
or awareness, making it highly suitable for surveillance and
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non-intrusive biometric authentication.
Over the years, research in gait recognition has seen sig-

nificant progress, evolving from handcrafted features and
shallow classifiers to deep convolutional networks[28] and,
more recently, transformer-based architectures[11]. Ap-
proaches in this domain vary widely, treating gait sequences
either as unordered sets or temporally ordered sequences,
and leveraging different modalities such as binary silhou-
ettes, pose keypoints, or RGB frames. Among these,
silhouette-based methods have emerged as a popular choice
due to their compact representation, privacy-preserving na-
ture, and strong performance across benchmarks [5, 10, 28]

Despite recent advancements, gait recognition still faces
several critical challenges. First, the collection and man-
ual annotation of large-scale labeled datasets is both
labor-intensive and expensive. While some datasets like
GREW[49] and OUMVLP[38] provide extensive labeled
gait sequences, and others like GaitLU-1M[12] offer large-
scale unlabeled data, the task inherently demands coverage
of a wide range of covariates. These include variations in
clothing, carried objects (e.g., bags), and viewing angles-
factors that significantly impact recognition accuracy. This
makes it difficult to scale purely through real-world data
collection.

To address the limitations of limited labels and diverse
sample collection in gait recognition, we explore diffusion-
based models for generating high-quality synthetic gait se-
quences for both known and novel identities. Unlike prior
works that rely on simulated environments [8] or alterna-
tive generative models such as VAEs [29], our approach is
the first to train a video diffusion model directly on silhou-
ette data. This enables the generation of realistic, tempo-
rally consistent gait cycles in the silhouette domain. Beyond
generation, we show that incorporating these synthetic se-
quences into the gait recognition pipeline improves down-
stream performance, particularly in low-label or privacy-
constrained scenarios-demonstrating the effectiveness of
synthetic data not just for visual quality but also for recog-
nition utility.

We propose a diffusion-based framework for synthesiz-
ing novel gait sequences, with the goal of improving recog-
nition performance-particularly in low-label regimes. Our
main contributions are summarized as follows:
• Consistent gait sequence generation: We propose

GaitCrafter, a diffusion-based framework to generate re-
alistic and temporally consistent gait sequences in the sil-
houette domain. Our model is trained from scratch and
captures complete gait cycles for multiple human identi-
ties.

• Controllable generation across covariates: We enable
fine-grained control over generated gait sequences by
conditioning on covariates such as camera viewpoint,
clothing, and carried objects. This allows us to simulate

diverse walking conditions that are difficult to collect in
real-world datasets.

• Improving recognition with synthetic data: We show
that incorporating synthetic sequences into the training
pipeline improves gait recognition performance, partic-
ularly under challenging conditions. Our method also
supports the generation of novel identities, expanding the
identity space and helping the model generalize better.

2. Related Works
Gait recognition focuses on identifying individuals
based on their walking patterns and body movements. This
task can be approached through various modalities, includ-
ing physical body structure and motion dynamics [4], bi-
nary silhouettes, or RGB video frames [9, 10, 13, 18, 28,
41]. Our work centers on the silhouette-based modality due
to its balance between privacy and discriminative power.

Early methods addressed the task by capturing either
global features [5], local discriminative parts [10], or a com-
bination of both [28].

Inspired by image classification, GaitBase [13] em-
ployed a straightforward ResNet-based architecture [15] to
learn effective gait embeddings. More recent advancements
have[9, 30, 40, 41] emphasized dynamic feature adaptation.
Synthetic Data in Biometrics Generative models have be-
come an essential tool in biometric research, addressing
challenges such as data scarcity, covariate variation, privacy
preservation, and robust spoof-detection. Early work lever-
aged variational autoencoders (VAEs) to synthesize low-
resolution facial images, fingerprints, and irises for data
augmentation [25, 39]. Although VAEs provided control-
lable latent spaces, the visual fidelity and identity retention
were limited. Moreover, previous works on biometrics have
primarily focused on the RGB domain [1, 2, 27, 33, 34]
GAN-based Synthesis The introduction of generative
adversarial networks (GANs) elevated image realism.
StyleGAN-series models produced high-resolution faces
that are now used for both augmentation and deepfake de-
tection research [42]. In gait analysis, GaitGAN and its
variants focused on silhouette translation across viewpoints
or clothing conditions [45, 46]. Despite their success, clas-
sical GANs often struggle with temporal consistency in
video biometrics and require careful training to avoid mode
collapse.
Diffusion Models for Biometrics. Diffusion models have
recently surpassed GANs in perceptual quality and likeli-
hood estimation. Face diffusion frameworks enable con-
trollable editing (age, expression) while preserving identity
embeddings [26, 35]. Video diffusion has been applied to
talking-head generation, producing temporally coherent se-
quences for lip-reading and avatar animation [37]. How-
ever, most diffusion work focuses on RGB data; dedicated
silhouette-based diffusion for gait, as proposed in our study,



Figure 2. Overview of GaitCrafter: The left block shows the training stage, where the model is trained using covariate, view, and identity
conditions. At inference time (right block), GaitCrafter can mix one-hot tokens of different IDs to generate a novel identity sample.

remains under-explored.
Limitations and Open Problems. Key challenges per-
sist across modalities: (i) identity preservation-ensuring
synthetic samples faithfully encode biometric signatures
while remaining visually diverse; (ii) covariate control-
modulating pose, illumination, or accessories in a disentan-
gled manner; and (iii) temporal coherence for video bio-
metrics such as gait and lip movement. Our work ad-
dresses these gaps by training a silhouette-domain video
diffusion model that (1) maintains identity features, (2) en-
ables explicit covariate control (viewpoint, clothing, bag-
gage), and (3) produces temporally consistent 30-frame gait
cycles suitable for downstream recognition.

3. Method
Overview: Gait recognition is fundamentally limited by the
availability of labeled data-both in terms of the number of
unique identities and the number of samples per identity.
This scarcity makes it challenging to train robust models,
especially under covariate variations such as clothing, view,
and carried objects. To address this, we propose the use
of synthetic data to augment training. We leverage a diffu-
sion model to generate realistic and temporally consistent
gait sequences in the silhouette domain. Our hypothesis is
that this synthetic data can improve gait recognition per-
formance, particularly in low-label settings. We generate
two types of synthetic data: (1) new samples for existing
identities to increase intra-class variation, and (2) entirely
new identities-referred to as novel IDs-to expand the iden-
tity space. Together, this synthetic data aim to improve gait
models.
Background: Diffusion model[16] involves two stages:
forward process which does noise addition to the sample,
and backward process, to denoise the samples in successive
steps. Given an initial data distribution q, the forward pro-
cess incrementally introduces noise into data sampled from
the distribution y0 ∼ q(y0). After adding noise at timestep
t, y0 becomes yt. The backward process, or denoising, is

designed to learn to remove this noise. Ultimately, during
inference the denoising diffusion process generates a new
data sample from a gaussian noise over a series of steps,
effectively breaking down the complex task of modeling
distributions into simpler, sequential denoising challenges.
This forward and backward process is described as,

yt =
√
αtyt−1 +

√
1− αtϵ, (1)

ŷt−1 =
1

√
αt

(
yt −

1− αt√
1− ᾱt

ϵθ(yt, t)

)
, (2)

where ϵ ∼ N (0, I) and αt are variance schedule coeffi-
cients, ϵθ is learned noise prediction and ᾱt is the cumula-
tive product of αt.

3.1. GaitCrafter
Video diffusion models typically operate either in pixel
space[17] or in latent space[3, 48]. While latent-based mod-
els are generally faster and more resource-efficient, their
limited capacity often makes it challenging to preserve fine-
grained visual details, especially under complex conditions
[47]. To better retain such details, we adopt a pixel-based
video diffusion model [17] for synthetic gait sequence gen-
eration. This choice is particularly well-suited to gait recog-
nition and biometric tasks, which require high fidelity in
subtle motion and structural cues. Although pixel-based
diffusion is computationally more demanding, we mitigate
this overhead by employing the silhouette modality, which
has a binary structure (mostly 0s and 1s) and a significantly
simpler distribution compared to RGB inputs. This not
only reduces the learning complexity but also accelerates
the training process without sacrificing the preservation of
discriminative features.

In our method (Figure 2), we build upon a 3D U-Net
architecture within a video diffusion framework. The 3D
U-Net with spatial and temporal attention layers enables
our model to capture both spatial and temporal correlations
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Figure 3. Overview of Reverse Process: We visualize the reverse diffusion process during generation. It is interesting to observe that
starting from standard Gaussian noise, the model is able to recover a clean bimodal distribution characteristic of gait silhouettes-composed
of sharp foreground and background regions.

across the entire gait sequence, which is essential for main-
taining motion consistency and structural realism in gener-
ated videos.

We condition the generation process on three key fac-
tors that significantly impact gait appearance: (1) person
identity (ID), (2) view angle, and (3) covariates such as
clothing or carried objects.
ID Control To represent identity, we use a one-hot encoded
ID-preserving token (xid), which is added as a condition-
ing signal to the U-Net blocks during diffusion. This de-
sign choice is motivated by the biometric nature of gait-each
identity is expected to exhibit a unique and consistent mo-
tion pattern that the model should preserve.
Condition Control For view and covariate conditioning,
we first encode the angle and covariate labels into sepa-
rate latent tokens using a view encoder and a covariate en-
coder, respectively. These tokens are then temporally re-
peated to match the video length, resulting in 3D tensors:
xview for view conditioning and xcovariate for covariate
conditioning. During generation, these tensors are added
to the input-either the noise tensor during training or the
video tensor during inference-to guide the model toward
the desired attributes. This additive conditioning allows for
fine-grained control over the output video’s viewpoint and
covariate characteristics.

Overall, our conditioning strategy allows the diffusion
model to synthesize gait sequences that are not only tem-
porally coherent but also explicitly aligned with the desired
identity, angle, and covariate conditions. This enables pre-
cise control during generation and improves the applicabil-
ity of the synthetic sequences for training gait recognition
models under varied scenarios.

pθ(yt−1|yt, xcond) = N (yt−1;µθ(xpar),Σθ(xpar)), (3)

xpar = {yt, t, xid, xcond}, xcond = {xview, xcovariate}.
(4)

Here, pθ is the posterior with mean µθ and variance Σθ

modeled by the neural network with parameters θ and yt
is the noisy sample at timestep t.

We train the model by making it predict the noise using
mean squared error loss,

Lmse = Et∼U(1,T ),y0∼q(y0),ϵ

[
∥ϵ− θ(xpar)∥2

]
(5)

where, ϵ is the noise added, xpar is the input to the diffusion
model consisting of the noisy sample yt, and timestep t.

Finally, even though gait silhouettes exhibit a bimodal
distribution-mostly consisting of foreground (value 1) and
background (value 0)-we are still able to effectively model
this distribution by simply adding Gaussian noise, follow-
ing the standard diffusion process as shown in Fig 3. De-
spite the binary nature of the data, the model learns to cap-
ture the underlying structure and temporal dynamics of sil-
houette sequences, showing that the original diffusion for-
mulation is sufficient for learning in this domain without re-
quiring a specialized noise schedule or discretization strat-
egy.

4. Experiments and Results
Diffusion setup: We employ a 3D U-Net architecture for
our diffusion model, with an input dimension of 64 and
channel multipliers set to (1, 2, 4, 8). The model is con-
ditioned on identity information using one-hot encodings,
where the conditional dimension corresponds to the num-
ber of person IDs (PIDs) in the training data-74 for the full
(100%) setup and 15 for the 20% setup. Each generated
video consists of 30 frames. We train the model using the
Adam optimizer with a learning rate of 1 × 10−4, a batch
size of 4, and 100 diffusion time steps.

The diffusion model is trained for 100K iterations with
identity conditioning. Once trained, the model is used to
generate synthetic samples for both original IDs (OD) and
novel IDs (ND). The set (OD) includes the same number
of IDs as in the original training data, while (ND) includes
one fewer (i.e., (|ND| = |OD| − 1)). This results in an
augmented dataset of size (2× PIDs − 1).
Experiment setup: For all our analysis, we use the
CASIA-B dataset[44] and the GaitGL[28] model. GaitGL
is one of the best-performing models on CASIA-B, and the
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Figure 4. Diffusion Generated Sample: We show our diffusion-generated novel sample for different angles and clothing conditions. We
show we can maintain consistent view angle and clothing condition.

Methods 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM
O 95.1 98.3 98.9 97.9 96.2 94.1 97.2 98.9 99.4 98.8 94.1 97.2

+ OD 95.1 97.5 98.6 97.4 95.6 93.0 96.0 98.4 98.9 97.8 92.2 96.4
+ ON 94.5 97.7 98.3 97.7 96.2 94.7 97.1 98.9 99.1 98.5 93.8 97.1

BG
O 92.7 96.1 96.7 95.5 93.7 88.5 92.8 96.3 98.3 96.3 90.3 94.3

+ OD 91.6 95.3 96.4 94.8 93.2 89.2 91.8 97.3 98.2 96.1 89.8 93.9
+ ON 91.4 95.4 97.4 95.5 94.4 92.7 93.0 96.7 97.8 97.8 91.3 94.9

CL
O 76.3 89.3 91.0 89.3 84.4 77.4 83.3 87.9 87.6 84.1 69.1 83.6

+ OD 77.1 90.4 92.5 89.5 85.4 79.6 82.7 87.1 90.7 83.8 70.9 84.5
+ ON 75.8 90.6 93.3 90.6 87.0 80.8 85.7 88.7 91.6 86.2 71.0 85.6

Table 1. Impact of Synthetic data on gait recognition performance in CASIA-B with 100% labeled data. O means Original data, OD

means diffusion generated original data and ON means diffusion generated novel data.

dataset itself is relatively limited in both scale and diversity-
making it a suitable benchmark for evaluating the effective-
ness of synthetic data.

We investigate two additional setups of incorporating
synthetic data into gait recognition:
• Open Set: We simulate scenarios with limited identity di-

versity (e.g., 20% of total PIDs) and assess whether syn-
thetic data can compensate for the restricted number of
IDs.

• Closed Set: We examine performance under limited sam-
ple availability per identity (e.g., 20% of samples per ID),
testing whether synthetic augmentation improves model
robustness in this low-sample regime.
It is important to note that, in both the open set and

closed set cases, the diffusion model is trained using only
the limited data, and the gait recognition model is trained on
a combination of the limited real data and the corresponding
synthetic data.

4.1. Results and Analysis
First, in Section 4.1.1, we present the generative and vi-
sual results of our model, highlighting the quality and con-
sistency of the synthesized gait sequences. Next, in Sec-
tion 4.1.2, we provide a quantitative evaluation of the gen-
erated samples. In Section 4.1.3, we analyze the impact of
incorporating synthetic data into downstream gait recogni-
tion models. Finally, in Section 4.1.4, we discuss key chal-
lenges and limitations encountered during our study.

4.1.1. Qualitative Analysis of synthetic data:
Consistent Gait Generation. Most existing open-source
video diffusion models [3, 6] struggle to generate videos
with more than 25 frames. Moreover, these models are
generally trained on RGB datasets and are not well-suited
for producing temporally consistent silhouette sequences,
which are crucial for gait recognition tasks. In contrast,
our proposed gait diffusion model is specifically trained to



Methods 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM
O 82.3 92.0 94.3 91.4 84.8 82.9 85.6 92.3 94.4 92.0 75.8 87.9

+ OD 82.6 88.9 94.0 90.5 85.4 82.9 86.4 92.1 93.6 90.0 77.8 87.7
+ ON 76.4 88.2 93.3 90.8 84.3 78.6 83.0 92.5 94.7 88.9 75.6 86.0

BG
O 72.7 84.0 88.0 86.2 78.1 74.3 77.0 85.1 87.2 87.3 69.1 80.8

+ OD 72.5 81.7 85.7 85.3 79.0 72.7 76.5 85.1 88.1 87.3 70.0 80.4
+ ON 69.1 82.2 86.4 85.0 76.5 70.9 77.1 85.3 88.3 82.2 64.9 78.9

CL
O 49.3 67.1 68.9 65.0 59.1 52.1 53.3 59.6 62.0 58.8 44.5 58.2

+ OD 48.6 62.1 66.5 63.3 57.6 55.4 55.6 60.4 64.6 58.2 42.1 57.8
+ ON 49.2 64.2 67.4 68.5 63.7 59.5 60.7 67.0 67.5 59.9 43.8 61.0

Table 2. Impact of Synthetic data Open-set settings on CASIA-B with 20% labeled subset. O means Original CASIA-B, OD means
diffusion generated original data and ON means diffusion generated novel data.

generate 30-frame silhouette sequences, corresponding to
a full gait cycle [5]. This design choice ensures that each
generated sequence captures the complete periodic motion
of a walking individual. As illustrated in Figure 1, our
model successfully generates consistent 30-frame gait cy-
cles across multiple identities, demonstrating both temporal
coherence and structural stability in the silhouette domain.
Controllable Gait Generation. Gait recognition is heav-
ily influenced by covariates such as clothing, baggage, and
camera angle. These factors introduce large intra-class vari-
ations, and handling them is essential for building robust
gait recognition models. However, in real-world datasets,
it’s often difficult to collect gait sequences of the same indi-
vidual under multiple covariate conditions.

In Figure 4, we show that our method can generate gait
sequences while controlling for key covariates. Specifically,
we demonstrate the ability to modify view angle, clothing,
and baggage conditions for the same identity. This control-
lability is important because it allows us to generate missing
variations for an individual, even if those conditions were
not present in the original data. Our model learns to gener-
alize across conditions and synthesize diverse yet identity-
consistent sequences.
Preserving Gait Biometric A fundamental question when
generating gait sequences is whether the identity-specific
gait biometric is preserved. To validate this, we compare
the embeddings of real and synthetic sequences using a pre-
trained gait recognition model. The idea is simple: if the
synthetic samples truly preserve the identity, their embed-
dings should be close to the real samples of the same indi-
vidual in the feature space.

We use a GaitGL model pretrained on real CASIA-B
data to extract gait embeddings. Since this model is trained
to cluster similar gait patterns together, it serves as a good
measure of biometric consistency. In Figure 6, we show a
t-SNE plot of the embeddings from both real and synthetic
data. We observe that the synthetic samples cluster tightly
around their corresponding real samples, indicating strong

identity preservation.
This result supports our hypothesis that the diffusion-

based synthetic sequences not only look realistic but also
maintain the underlying gait signature required for recogni-
tion.
Generating Novel Identities. During training, we use one-
hot embeddings to represent individual IDs in the diffusion
model. A natural question that arises is-what happens if we
activate multiple IDs at once during inference? We exper-
iment by setting multiple entries in the one-hot embedding
to 1, effectively blending identity codes. Interestingly, we
observe that this results in the generation of new, distinct
gait sequences.

As shown in Figure 6, these mixed-ID samples form sep-
arate clusters in the embedding space, distinct from the orig-
inal identities. This suggests that the model is not merely
averaging existing identities, but learning to synthesize new,
coherent gait patterns. We refer to these as novel IDs.

This has important implications for gait recognition,
which inherently suffers from a limited number of labeled
identities. By generating novel IDs that are consistent,
identity-distinct, and controllable under different covari-
ates, we can significantly expand the training distribution.
In Figure 5, we show generated samples for two known IDs
under baggage and clothing variations. In the last row, we
present the novel ID generated by combining the two iden-
tity embeddings, and find that it results in a third, visually
coherent and structurally consistent gait cycle. This opens
up a promising direction for synthetic identity augmentation
in biometric tasks.

4.1.2. Quantitative Analysis:
Since it is difficult to quantify the similarity of silhouette
sequences using models trained on RGB images, we use
a variant of the CLIP score tailored for gait. Specifically,
we measure the cosine similarity between embeddings ex-
tracted from a pretrained gait recognition model using real
samples for both real and generated samples. We refer



Figure 5. Discussions: Synthetic gait sequences: Rows 1 and 3 in blue show original samples, and rows 2 and 4 in pink show corresponding
generated samples for the same IDs. The last row shows a generated novel ID sequence in green. Left: NM condition. Middle: BG
condition. Right: CL condition.

Model Baseline Gait Tokens MLP Ours
GBS Score 0.674 0.543 0.222 0.753

Table 3. GBS Score comparison for different diffusion setups.

to this metric as Gait Biometric Similarity (GBS), which
captures how well the synthetic samples preserve identity-
specific gait features. In our experiments, we use GBS to
compare the quality of samples generated by different diffu-
sion models and report the results as a measure of biometric
consistency.

For our study, we explore three different condition-
ing setups for identity representation within the diffusion
model: Baseline (Condition Concatenation): We follow a
standard conditional diffusion setup where all conditioning
variables-including identity, view, and covariate-are con-
catenated into a single input token. Gait Token as Iden-
tity: We use pretrained gait tokens as identity tokens. MLP-
Based ID Encoder: We introduce a lightweight MLP to en-
code one-hot identity vectors into a learnable identity token
space.

These setups help us study how different forms of iden-
tity encoding impact the quality, consistency, and controlla-
bility of the generated gait sequences.

4.1.3. Effect of Downstream Tasks:
Impact of Increasing Synthetic Samples per ID. Our first
analysis investigates the effect of increasing the number of
samples for each identity. In Table 1, we report the per-
formance of a gait recognition model trained on both real
data and diffusion-generated sequences corresponding to
the same (real) IDs. We observe a modest improvement
of 0.9% under the clothing (CL) condition-one of the most
challenging scenarios in the CASIA-B dataset. However,
CASIA-B already contains multiple samples per subject, so
simply adding more sequences for existing IDs does not sig-
nificantly improve performance across all conditions.
Impact of Increasing Number of Synthetic IDs. Next, we

Figure 6. tSNE visualization of synthetic samples: The left plot
shows real sample for known IDs, circled in black, demonstrating
biometrics is preserved for known IDs. In the right plot, we show
known IDs circled in red, and generated novel IDs using those
original ones in green.

explore the effect of increasing the number of unique identi-
ties by introducing synthetic IDs-referred to earlier as novel
IDs. We generate multiple samples for these new identities,
which remain consistent and preserve key gait characteris-
tics. In Table 1, we show that training the model with a
mix of real and novel IDs leads to a larger gain: a 2% im-
provement under the clothing condition and a 0.9% boost
in overall average accuracy, using the same model architec-
ture. These results highlight the benefit of synthetic identity
expansion as a more effective strategy than simply increas-
ing sample count for existing individuals.
Closed Set vs. Open Set: Understanding the Role of Syn-
thetic Data. One of the primary motivations for generating
synthetic data in gait recognition is to support learning un-
der limited-label scenarios. Synthetic data can be helpful
in two major conditions: (1) when there are few samples
available per individual, and (2) when the total number of
identities (IDs) is limited. We refer to these two setups as
the closed-set and open-set cases, respectively.

In the closed-set setup, we train the diffusion model on
all identities but restrict the number of training samples to
20% per ID. We then generate additional synthetic samples



Figure 7. Different Generation using Different Seeds: Different Columns in the same ID, shows generation using different random seeds.
We show different seeds generates small variation in gait pattern.

Data Score avg # of Frame
NM BG CL

Original (O) 97.2 94.3 83.6 90
Novdel Ids (ON ) 93.4 89.5 75.6 30

Table 4. Effect of Only Novel Id’s: We report the performance
of a model trained only on synthetic novel IDs and evaluated on
real test data. This setup helps us understand whether synthetic
identities alone are sufficient for learning meaningful gait features.

for these same identities to increase the per-ID data vol-
ume. We observed that adding synthetic samples per iden-
tity in this setting does not lead to any significant improve-
ment in performance. In contrast, we explore the open-set
setup by training the diffusion model on only a small subset
of identities-20% of the total, which corresponds to around
15 IDs. We then generate synthetic data for novel IDs not
seen during training. In Table 2, we show that adding these
synthetic novel IDs improves performance, especially under
challenging covariates such as the clothing (CL) condition.

4.1.4. Discussions:

Impact of Training Only on Synthetic Data. We further
evaluate the effectiveness of our synthetic data by training
the gait recognition model using only the synthetic novel
IDs, without any real data. The goal is to see whether the
synthetic samples alone are sufficient to preserve gait bio-
metric patterns and enable downstream learning. This setup
is particularly useful in scenarios where access to real bio-
metric data is restricted due to privacy or legal concerns-
making synthetic data a viable alternative.

Although the model is trained purely on synthetic data,
we evaluate its performance on real test samples. As shown
in Table 4, the model achieves performance comparable to
training with real data. This demonstrates that the syn-
thetic sequences not only retain discriminative gait features
but also align closely with the real data distribution, allow-
ing the model to generalize across domains without signif-
icant degradation. This small 6% gap can be attributed to
the fact that real CASIA-B gait videos contain more than
90 frames, offering higher motion diversity using tempo-

ral crops, whereas our synthetic sequences are limited to 30
frames. Despite this, the synthetic data still captures the es-
sential characteristics of gait and proves effective for train-
ing in low-label or privacy-constrained settings.
Multi-Sample Generation Using Different Seeds. In real
gait recognition datasets, each video often contains more
than 30 frames. This allows for temporal cropping during
training, which introduces natural variation and helps im-
prove model robustness. However, our diffusion model is
designed to generate exactly 30-frame sequences-equivalent
to a single gait cycle-so temporal cropping is not applicable
to synthetic data.

To introduce variation and enrich the training set, we
generate multiple versions of each sample by varying the
random seed during inference as shown in Fig 7. Each
seed produces a slightly different version of the walking
sequence, even under the same identity and covariate con-
ditions. We generate 5 such variations per setting. These
samples maintain overall gait structure but introduce subtle
changes in motion dynamics.

We find that training the gait recognition model with
these additional variations improves performance compared
to using just a single generated sequence per identity. This
suggests that even small perturbations introduced via sam-
pling help the model generalize better, compensating for the
lack of temporal augmentation in fixed-length synthetic se-
quences.

5. Conclusion

We introduce GaitCrafter, a diffusion-based framework for
generating realistic and controllable gait sequences in the
silhouette domain. By training a video diffusion model
from scratch, GaitCrafter enables identity-aware synthesis
with covariate control, addressing key challenges in data
scarcity and diversity. Our experiments demonstrate that
incorporating synthetic data from GaitCrafter improves gait
recognition performance, especially in low-label and semi-
supervised settings. This work highlights the potential
of diffusion models in advancing gait recognition through
scalable and high-quality data generation.
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